
 Embedded Electronics Page 1

DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793

http://www.dyneng.com
sales@dyneng.com

Est. 1988

Tool installation for PMC-MC-X2/X4
with P2020 series processor

This document contains information of proprietary interest to Dynamic
Engineering. It has been supplied in confidence and the recipient, by accepting
this material, agrees that the subject matter will not be copied or reproduced, in
whole or in part, nor its contents revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this manual is
accurate and complete. Still, the company reserves the right to make
improvements or changes in the product described in this document at any time
and without notice. Furthermore, Dynamic Engineering assumes no liability
arising out of the application or use of the device described herein.

Dynamic Engineering’s products are not authorized for use as critical
components in life support devices or systems without the express written
approval of the president of Dynamic Engineering.

6/22/2018 REV A2

http://www.dyneng.com/
mailto:dedra@dyneng.com

 Embedded Electronics Page 2

INTRODUCTION 3

DEVELOPMENT PLATFORM SETUP 3

CROSS PLATFORM DEVELOPMENT TOOLS SETUP 4
Build cross-development tools and images 7
Install toolchain on your development Host 7
Verify your installation 8
Verify development toolchain 9

 Embedded Electronics Page 3

Introduction
On the development board a minimized version of Linux 2.6.35 is installed.

Linux minimal image is a Busy Box. Development tools are not a part of Busy
Box environment. According to Linux traditions, native for the hardware platform
development tools are part of full Linux image only. You cannot do development
on a small, embedded platform with NXP’s P2020 CPU. Cross-platform
development is typical Linux way for software development for embedded
devices. It is necessary to install and build cross platform toolchain on the
development host.

Development platform setup
The development desktop is Intel x86-64 based computer with Linux CentOS-
7.5.1804 with developer options installed. Standard development environment for
that version of Linux comes with make tools version 3.82. That version has some
bugs. Replace make 3.82 with make 4.1
 procedure:
cd /tmp
wget http://ftp.gnu.org/gnu/make/make-4.1.tar.gz
tar xvf make-4.1.tar.gz
cd make-4.1/
./configure
make
sudo make install
rm -rf make-4.1.tar.gz make-4.1

After these few steps, the make files are installed in /usr/local/bin/make.
=> Skip if you already have installed make tools 4.1 or above.

 Embedded Electronics Page 4

Cross platform development tools setup
P2020 is NXP’s popular communication processor with PowerPC Architecture.
NXP has Linux SDK for Linux development for P2020 at
https://www.nxp.com/support/developer-resources/run-time-software/linux-
software-and-development-tools/linux-sdk-for-qoriq-processors:SDKLINUX
You will need to register your name and email to download the SDK.
Current SDK v.2.0 doesn’t support P2020 QorIQ processor and you will need to
select Previous tab

QorIQ Linux SDK v1.9 is the latest Linux development package for P2020
processor.

https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/linux-sdk-for-qoriq-processors:SDKLINUX
https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/linux-sdk-for-qoriq-processors:SDKLINUX

 Embedded Electronics Page 5

You need 3 packages only:

 Embedded Electronics Page 6

1. QorIQ SDK V1.9 PPCE500V2 CACHE.iso
2. QorIQ SDK V1.9 PPCE500V2 IMAGE.iso
3. QorIQ SDK V1.9 SOURCE.iso

SDK Image has pre-built binaries. A good option to use them for reference. SDK
Cache has pre-built binaries. T hey will save significant time for you if you install
SDK Source and SDK cache into same folder.

Mount SDK cache first and run ./install from the top folder. Don’t do anything else
with SDK cache, please! You may unmount it after installation.

Mount SDK source and run ./install. Choose same place when you have install
SDK cache.

Now you can follow QorIQ SDK 1.9 Documentation to prepare Host development
environment, setup Poky to build images.

Host development environment needs Python 2.7 or above. If you don’t have
Python
 Procedure:
$ wget https://www.python.org/ftp/python/2.7.6/Python-2.7.6.tar.xz
[NOTE: Python 2.7.3 and python 2.7.5 can be used as well.]
$ tar -xf Python-2.7.6.tar.xz
$ cd Python-2.7.6
$./configure --prefix=/opt/python-2.7.6
$ make
$ sudo make install
Run export command [below] to ensure python 2.7.x is used for Yocto build.
$ export PATH=/opt/python-2.7.6/bin:$PATH

For a list of the Linux distributions tested by the Yocto Project community see
SANITY_TESTED_DISTROS
in poky/meta-yocto/conf/distro/poky.conf.
The following is the detailed package list on the CentOS hosts:
$ sudo yum install gawk make wget tar bzip2 gzip python unzip perl patch \
diffutils diffstat git cpp gcc gcc-c++ glibc-devel texinfo chrpath socat SDL-
devel xterm
For the Fedora hosts:
$ sudo yum install sudo yum install gawk make wget tar bzip2 gzip python unzip
perl
patch \
diffutils diffstat git cpp gcc gcc-c++ glibc-devel texinfo chrpath \

 Embedded Electronics Page 7

ccache perl-Data-Dumper perl-Text-ParseWords perl-Thread-Queue socat \
findutils which SDL-devel xterm
For Ubuntu and Debian hosts:
$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \
build-essential chrpath socat libsdl1.2-dev xterm
Extra packages are needed for Ubuntu-64b:
$ sudo apt-get install lib32z1 lib32ncurses5 lib32bz2-1.0 ia32-libs lib32ncurses5-
dev
For OpenSUSE host:
$ sudo zypper install python gcc gcc-c++ git chrpath make wget python-xml \
diffstat makeinfo python-curses patch socat libSDL-devel xterm

To setup Poky execute a help command
$. ./fsl-setup-poky -h
This command output provides a list of architectures to support by QorIQ SDK
V1.9
Poky installation is
$. ./fsl-setup-env -m p2020rdb
p2020rdb is a machine to support p2020 CPU.

Build cross-development tools and images
$ cd <sdk-install-dir>/build_p2020rdb
$ bitbake <image-target>
Where <image-target> is one of the following:
• fsl-image-minimal : contains basic packages to boot up a board
• fsl-image-core : contains common open source packages and FSL specific
packages.
• fsl-image-full : contains all packages in the full package list.
• fsl-image-mfgtool : contains all the user space apps needed to deploy the fsl-
image-mfgtool image to
a USB stick, hard drive, or other large physical media.
• fsl-image-virt : contains toolkit to interact with the virtualization capabilities of
Linux
• core-image-x11 : Freescale image with a very basic X11 image with a terminal
• fsl-toolchain : the cross compiler binary package

Select fsl-toolchain to build standalone toolchain only.

Install toolchain on your development Host
$ cd build_p2020rdb/tmp/deploy/sdk
$./fsl-networking-eglibc-<host_arch>-<core>-toolchain-<release>.sh

 Embedded Electronics Page 8

The default installation path for standalone toolchain is /opt/fsl-qoriq/1.9/. The
install folder can be specified during the installation procedure.

Verify your installation
$ echo $PATH
you should see /opt/fsl-qoriq/1.9/ in the output list
/opt/fsl-qoriq/1.9/sysroots/x86_64-fslsdk-linux/usr/bin:/opt/fsl-
qoriq/1.9/sysroots/x86_64-fslsdk-linux/usr/bin/powerpc-fsl-linux-
gnuspe:/home/alex/QorIQ-SDK-V1.9-20151210-
yocto/sources/poky/scripts:/home/alex/QorIQ-SDK-V1.9-20151210-
yocto/sources/poky/bitbake/bin:/home/alex/CodeSourcery/Sourcery_G++_Lite/bi
n:/home/alex/CodeSourcery/Sourcery_G++_Lite/bin:/usr/lib64/qt-
3.3/bin:/home/alex/perl5/bin:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbi
n:/home/alex/.local/bin:/home/alex/bin

 Embedded Electronics Page 9

Verify development toolchain
$ echo $CC
output should be like that
powerpc-fsl-linux-gnuspe-gcc -m32 -mcpu=8548 -mabi=spe -mspe -mfloat-
gprs=double –sysroot=/opt/fsl-qoriq/1.9/sysroots/ppce500v2-fsl-linux-gnuspe
That is a proof the development tools are installed and you are ready for Hello,
World!

Application development! When you compiled your first Hello,World! Application,
copy your executable on the target for execution.

